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ACCOUNT FOR LARGE DEFORMATIONS OF A MATERIAL
CAUSED BY THE MOISTURE-CONTENT GRADIENT
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An uncoupled moisture-elasticity problem is solved in Lagrangian coordinates.

Introduction. Many bodies, such as building materials, foods, and soils and grounds have structures in which
the dominant role is played by the coagulation bonds formed due to the linkage of solid-phase particles through the
thin water interlayers. This leads to a high mobility of the skeleton particles relative to one another, even when the
forces applied to the material are insignificant. Therefore, such systems, when loaded, are prone to large deformations
and form changes. In particular, they may undergo structural transformations in the course of mass exchange with the
environment. In so doing, the main causes of deformations of the material and its structural changes are the capillary
and disjoining pressures of thin liquid layers. It is known that in such materials the volume is related to the moisture
content by the relation V = V0(1 + βv(W − W0)) [1] and, e.g., for metals an analogous temperature dependence takes
place: V = V0(1 + α(T − T0)) [2]. Consequently, an analogy between the temperature and moisture stresses exists. Thus,
in thermoelasticity, the strained-stressed state of the material is definitively determined by the nonuniform temperature
distribution in the body. Likewise, in the process of drying of a moist material, stresses resulting from the nonuniform
moisture distribution appear in it.

The processes of heat and mass transfer followed by deformation and stresses in materials have been investi-
gated fairly widely. In [3, 4], the stressed-strained state under intensive drying of a thin plate with various rheological
zones was investigated analytically. In [5], a closed system of interrelated equations of heat-and-mass transfer and de-
formation of an isotropic porous body is given. In [6], the stressed-strained state of an elastoplastic body was investi-
gated on the basis of the known one-dimensional distributions of the temperature, moisture content, and excess
pressure in the thickness. In [7, 8], the given state was investigated under intensive drying of a high-concentration dis-
perse system. The vapor front divides the material into a dry and a saturated part. For the dry part, the Hooke law is
used, and the behavior of the saturated region is described by a viscoelastic model based on the micromechanics of
the approach of particles with allowance for the surface forces and the viscous flow of the disperse phase. The non-
isothermal drying of an anisotropic material from wood was considered in [9], where internal stresses caused by the
moisture-content gradient were calculated using the concepts of elasticity theory. In [10], on the basis of the thermo-
dynamics of irreversible processes, a general system of interrelated equations of heat-and-mass transfer and deformation
for highly deformable disperse capillary colloid systems was written. The equations presented were solved numerically
in Euler coordinates. A computational experiment that permitted describing the heat-and-mass transfer and the stressed-
strained state of such systems was performed. In their monograph [11], Ugolev et al. presented the results of analytical
and experimental studies of the stressed-strained state in wood and made calculations for timber, using the finite-ele-
ment method. A mathematical model of interrelated heat and mass transfer and a viscoelastic rheological model for a
composite foodstuff are given in [12]. The heat and moisture distributions, as well as the stressed-strained state of the
material, were determined by the finite-element method. The results of the calculations were compared with the experi-
mental data for three-layer foodstuffs. In [13], on the basis of the finite-element method, a numerical procedure of cal-
culating the formation of cracks and their propagation in elastoplastic foodstuffs due to the stressed-strained state
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caused by the nonuniform moisture distribution in the cylindrical sample was developed. The moisture distribution in
a material is found by solving the problem of interrelated heat and moisture transfer.

From the above-listed works, it follows that for correct description of the behavior of a material in the drying
process it is necessary to study the mechanical motion of the material and, in a number of cases, its influence on the
mass-transfer processes as well.

It should be noted that unlike, e.g., metals the materials under consideration feature considerable shrinkages
and form changes. In so doing, there is a change in the relative position of particles, the number of contacts, the mean
distances between them, and the size distribution function of pores (which also affects the heat-exchange characteristics
of materials). Therefore, it is necessary to take into account the change in the form and size of the material in the
drying process. This is essential both for more accurate calculations of the processes of heat-and-mass transfer and cal-
culations of the stressed-strained state. In this connection, we turn our attention to the computational procedure in the
presence of large shears of the material.

Mathematical Formulation of the Problem for Deformable Media and Methods of Its Solution. The
above-mentioned literature sources consider various aspects of the processes of heat and mass transfer and the stresses
and strains in the material associated with them. However, in these works little consideration is given to the calcula-
tion errors associated with the deformations. For calculations, the Euler approach is used, which leads to the use of
Euler coordinates. Such an approach is only applicable for small deformations of the material, and at large shrinkages
it is approximate. As is known, using such an approach, one has to separate the elementary region of the space and
study the characteristics of the particles passing through it. For exact solution of the problems being investigated, one
has to use the Lagrangian representation, which leads to the use of Lagrangian coordinates. In such an approach, the
laws of change in the quantities characterizing a given individual particle of a solid medium are investigated. There-
fore, it is necessary to introduce a concomitant coordinate system associated with a moving particle of the solid me-
dium. If, at the initial instant of time, it is chosen to be rectangular, then at the subsequent instant it will be curved,
i.e., the concomitant coordinate system forms a mobile deformable curvilinear system. Note that, as in the hydrody-
namics, the Euler coordinates are "natural"; for the problems considered by us, the Lagrangian coordinates are "natu-
ral" and, therefore, we will use them hereinafter.

Let us take a material with an elementary rheological behavior obeying Hooke’s law. Suppose that the mass
transfer occurs under isothermal conditions. We also restrict ourselves to the simplest uncoupled moisture-stressed
problem in which the influence of the mechanical motion on the mass transfer is neglected. Moreover, we take into
account that the process of mechanical relaxation is much faster than the mass-transfer relaxation, and, therefore, at
each instant of time during drying the body can be thought to be in mechanical equilibrium. This permits us consider
the static problem of moisture elasticity. For simplicity, we assume that the problem is two-dimensional, and for cer-
tainty we take the stressed state to be plane. Finally, we assume that the physical properties of the material are inde-
pendent of its moisture.

We give the system of equations describing the problem stated in Lagrangian coordinates:
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Here the semicolon denotes the covariant derivative.
We choose a rectangular body, and at the initial instant of time we relate to the material the Cartesian or-

thogonal system of coordinates. We assume the following boundary conditions: at the upper boundary the mass ex-
change with the environment occurs by the Newton "law"
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the other three boundaries are impenetrable. The absence of external mass and surface forces is also assumed, and,
therefore, the material deforms only as a result of the nonuniform distribution of the moisture content.

Consider the technique for calculating the sought quantities realizing the Lagrangian representation. We as-
sume that at the initial instant of time the body is undeformed, the tensor g0ij is unit, and the Christoffel symbols are
equal to zero. Proceeding from this information and the boundary conditions, calculate the field of moisture contents
at the new time step by formula (1). On the basis of Eqs. (2)–(4), find the deformation of the material, having calcu-
lated the displacements ui and the new locations of the nodes. Then, using formula (5), determine the deformation ten-
sor. Finally, using (6)–(9), find the metric tensor and the Christoffel symbols for the new state. We take the
thus-determined state as the initial state for the next cycle of calculations. Note that at each time step the deformations
should be small due to the small change in the moisture content at each point in the time interval ∆t.

In the subsequent cycles, the metric tensor gij is no longer unit but reflects the deformed state of the coordi-
nate system connected with the body. For approximation of differential equations, one usually employs the finite-dif-
ference method, and the computational mesh thereby coincides with the coordinate grid (i.e., with the coordinate lines).
A shift of the material particles relative to one another will cause its deformation, which will lead to a decrease in the
calculation accuracy, and under a strong deformation the calculation will be completely impossible. One way to im-
prove the situation is to transform the calculation mesh into an orthogonal one at each time step. However, additional
operations will lead to a decrease in the accuracy and a faster accumulation of errors. Moreover, in this case the mesh
nodes will no longer coincide with the body boundaries, as a result of which an additional decrease in the calculation
accuracy will occur.

The integral methods, in particular, the finite-element method, do not suffer from such disadvantages. The fi-
nite-element method permits one to use elements of various forms and sizes and to model processes in bodies of ar-
bitrary form. The realization of the finite-element method is based on the variational principle. As applied to the given
problem, it is necessary to minimize the strain energy density. Let us make use of the rectangular Cartesian system of
coordinates. We formulate the variational principle as follows [14]:
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here ε0ij is the initial deformation caused by the shrinkage of the material.
A similar result is obtained by using the expression for the free energy density F, which at a constant tem-

perature will be of the form

F = µεijεij + (λ ⁄ 2) εkk
2

 − (3λ + 2µ) βεkk (W − W0) + Fc , (12)

where Fc is a constant independent of εij. Then the derivative with respect to εij gives the stress tensor
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leads to the equation of motion of the medium analogous to that obtained from formula (11).
For the mass-transfer equation, the variational formulation is of the usual form [15]:
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Let us construct the calculation procedure in Lagrangian coordinates. Refine the expression for ε0ij in Eq.
(11). To this end, we represent the initial deformation ε0ij formed at a point in the time interval ∆t at the last step k
as the difference of two quantities:

ε0ij = ε0ij
(1)

 − ε0ij
(2)

 . (16)

Here ε0ij
(1) = βl(W − W0)δij is the deformation caused by the difference of the moisture contents; W0 is the moisture

content at the initial instant of time t0 (initial moisture content of the material); W is the current moisture content; and

ε0ij
(2) is the deformation caused by the shift of the nodal points from the initial instant of time t0 to tk−1. Consequently,

we can write ε0ij
(2) = f(u0), where u0 = ∑ 

i=1

k−1

ui. Then, choosing the time step ∆t small enough so that the shifts determined

by the moisture gradient can be considered to be small, we find, by formula (15), the W distribution and then, by for-
mula (11), the shifts of the nodal points corresponding to equilibrium for the new distribution of moisture. On the
basis of the shifts obtained, we calculate the new values of the coordinates of the element nodes, which yields a new
equilibrium deformed state of the material. Determine the u0 values for each node. Taking the obtained state of the
material as the initial one, we complete the cycle.

To calculate the shifts, it is necessary to know the expression for the strain tensor due to displacements,
which in the Cartesian rectangular coordinate system will have the form
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Formula (17) is used to calculate large deformations and (18) — small ones. Because each time the equilib-
rium problem with changing moisture content distribution in the body at a small time step is solved, at each point the
change in the moisture content is small and, consequently, the deformations of the material at them will also be small.
Therefore, Eq. (18) can be used with a good accuracy. Note that (2)–(5) are also written taking into account the small-
ness of deformations.

The procedure of numerical calculation by the finite-element method used by us is based on the procedure
proposed in [14, 15]. Therefore, we shall only describe the features of the method being developed.

Let us break up the body under investigation into elements and take them as two-dimensional simplex-ele-
ments. This permits us to use, in solving the problem, the linear interpolation polynomials. Then the components of
the vector of displacements through their nodal values 


U



 will be written as
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Substituting expression (19), (20) into (11) and using Hooke’s law, we differentiate with respect to 
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 and then inte-

grate with respect to V and S to obtain finally a system of algebraic equations of the form
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In expression (21), the second term on the right takes into account the features of the solution of the problem
under consideration by the Lagrangian method. Note that the stiffness matrix [K] and the load column vector {f} are
calculated by means of the matrix [Be] of the element and the element area Se by the formulas
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Note that both [Be] and Se depend on the coordinates of the element nodes. Therefore, neither [K] nor {f} re-
main constant and are calculated at each time step. Recalculation of the stiffness matrix and the load column vector is
also performed in determining the moisture field.

It should be emphasized that, proceeding from the results of [14], the proposed method can also be general-
ized to nonlinear physical problems.

Results and Discussion. Figure 1 presents the results of calculation of the deformation of a material (using
the example of wood) in the drying process by the method described above. The bodies considered in the problems
have a vertical symmetry axis passing through their center. For the solution of the mechanical part of the problem to
be unique (the absence of motion of the body as a whole is necessary), the position of the material on the symmetry
axis, when ui(0, y) = 0, is fixed. Figure 1 shows the deformed states of the material at different instants of time. In
the initial state, the moisture content of the material W0 = 1 kg/kg, and for the environment the equilibrium value of
the moisture content is given: Weq = 0 kg/kg. According to [1, 9, 11, 16], the characteristic moisture conductivity co-
efficient for wood is aw = 3⋅10−9 m2/sec, the mass-transfer coefficient αw = 3⋅10−6 m/sec, the elastic modulus E =
3⋅107 Pa, and the Poisson coefficient ν = 0.5. The linear shrinkage factor of the material β = 0.5. Note that for wood
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Fig. 1. Deformation of a material with a free lower boundary (on the left) and
with a limited possibility of lower boundary displacement (on the right) in the
drying process at different instants of time: a) t = 0; b) 1; c) 4; d) 8; e) 14;
f) 25; g) 45; h) 80; i) 230 h.

829



(whose characteristic parameters were used in the calculations) this factor was set much higher for better visual dem-
onstration of the deformation process.

The calculation shows that in a body able to deform freely stresses having lower absolute values than in a
sample in which the lower boundary cannot move in the vertical direction develop. This can be explained by the
fact that free deformation partially removes the unassumed shrinkage caused by the moisture gradient. Consequently,
the ability to change form in response to the arising stresses leads to their partial removal. From Fig. 1, it is also
seen that an initially rectangular body at the end of drying, when the moisture content in the sample equalizes and
assumes a finite value, regains its initial form. Such a result is due to the fact that the calculations have been per-
formed for a material whose behavior under deformation obeys Hooke’s law. As is seen from [17, 18] however, the
very presence of cracking leads to a deviation of the final state of the sample from the rectangular shape. It is
known that real bodies exhibit plastic properties, which also causes a deviation of the final state of the material from
the rectangular shape and causes the appearance of residual stresses. Therefore, an elastic model of the material is a
rather rough approximation.

Analysis of the calculated data reveals two mutually opposite trends. On the one hand, the ability of the ma-
terial to deform freely in the drying process permits drying without large stresses in it and, consequently, without
cracking, which provides the possibility of obtaining a material with a strong structure. As mentioned above, however,
some materials, in particular, wood, also exhibit plastic properties. Therefore, it is obvious that at the end of drying
they will not take the initial shape, which will lead to their warping and deformation.

On the other hand, depriving the body of some degrees of freedom, i.e., not letting it deform in the drying
process, we prevent warping of the material. In so doing, however, large stresses leading to cracking and thus to an
impairment of its strength appear in it.

Conclusions. The consistency of the results obtained with the known physical notions about the behavior of
materials in the drying process and its features depending on concrete conditions permits stating that, on the basis of
the finite-element method, a workable method for solving problems in Lagrangian coordinates taking into account large
deformations of the material has been proposed. The use of this approach permits one to avoid additional assumptions
simplifying the problem [1, 3–13, 16], which decrease the adequacy of the mathematical model to the real physical
process or lead to approximate and bounded solutions.

NOTATION

aw, moisture-conductivity (diffusion) coefficient, m2/sec; [B], gradient matrix; [D], matrix of material charac-
teristics; E, elastic modulus, Pa; F, free energy density, J/m3; {f}, global load column vector; g, metric tensor deter-
minant; gij and gij, contravariant and covariant metric tensor components; h, material thickness, m; [K], global stiffness
matrix; N, number of elements; [N], shape function matrix; S, area, m2; hi, cosines of angles between the unit vector
of the normal to the surface and the coordinate lines; T, temperature, K; t, time, sec; ∆t, time step, sec; 


U



, nodal dis-

placement vector; ui and ui, contravariant and covariant components of the displacement vector, m; 

u



, displacement

vector; V, volume, m3; W, moisture content, kg/kg; Weq, equilibrium moisture content, kg/kg; xi, contravariant compo-
nents of the radius vector, m; x, y, coordinates; α, coefficient of volumetric thermal expansion, 1/K; αw, mass-transfer
coefficient, m/sec; ν, Poisson coefficient; β, linear shrinkage factor; βv, volume shrinkage factor; Γik

l , Christoffel sym-
bols; δj

i, unit tensor (Kronecker symbol); εij, covariant components of the deformation tensor; 


ε



, deformation vector;

λ, µ, Lame′ coefficients, Pa; σij, covariant components of the stress tensor, Pa. Subscripts: 0, initial; v, volume; i, j, l,
k, m, tensor components; e, element number; tr, transposed; eq, equilibrium; w, moisture; c, constant.
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